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Abstract

Fusing multiple information sources can yield significant benefits to suc-
cessfully accomplish learning tasks. Many studies have focussed on fus-
ing information insupervisedlearning contexts. We present an approach
to utilize multiple information sources in the form of similarity data for
unsupervisedlearning. Based on similarity information, the clustering
task is phrased as a non-negative matrix factorization problem of a mix-
ture of similarity measurements. The tradeoff between the informative-
ness of data sources and the sparseness of their mixture is controlled by
an entropy-based weighting mechanism. For the purpose of model se-
lection, a stability-based approach is employed to ensure the selection
of the most self-consistent hypothesis. The experiments demonstrate the
performance of the method on toy as well as real world data sets.

1 Introduction

Clusteringhas found increasing attention in the past few years due to the enormous infor-
mation flood in many areas of information processing and data analysis. The ability of an
algorithm to determine an interesting partition of the set of objects under consideration,
however, heavily depends on the available information. It is, therefore, reasonable to equip
an algorithm with as much information as possible and to endow it with the capability to
distinguish betweenrelevantandirrelevant information sources. How to reasonably iden-
tify a weighting of the different information sources such that an interesting group structure
can be successfully uncovered, remains, however, a largely unresolved issue.

Different sources of information about the same objects naturally arise in many application
scenarios. In computer vision, for example, information sources can consist of plain in-
tensity measurements, edge maps, the similarity to other images or even human similarity
assessments. Similarly in bio-informatics: the similarity of proteins,e.g., can be assessed in
different ways, ranging from the comparison of gene profiles to direct comparisons at the
sequence level using alignment methods.

In this work, we use a non-negative matrix factorization approach (nmf) topairwiseclus-
tering of similarity data that is extended in a second step in order to incorporate a suitable
weighting of multiple information sources, leading to amixtureof similarities. The latter
represents the main contribution of this work. Algorithms for nmf have recently found a
lot of attention. Our proposal is inspired by the work in [11] and [5]. Only recently, [18]
have also employed a nmf to perform clustering. For the purpose of model selection, we
employ a stability-based approach that has already been successfully applied to model se-



lection problems in clustering (e.g. in [9]). Instead of following the strategy to first embed
the similarities into a space with Euclidean geometry and then to perform clustering and,
where required, feature selection/weighting on the stacked feature vector, we advocate an
approach that is closer to the original similarity data by performing nmf.

Some work has been devoted to feature selection and weighting in clustering problems. In
[13] a variant of thek-means algorithm has been studied that employs the Fisher criterion
to assess the importance of individual features. In [14, 10], Gaussian mixture model-based
approaches to feature selection are introduced. The more general problem of learning a
suitable metric has also been investigated, e.g. in [17]. Similarity measurements represent
a particularly generic form of providing input to a clustering algorithm. Fusing such repre-
sentations has only recently been studied in the context of kernel-basedsupervisedlearning,
e.g. in [7] using semi-definite programming and in [3] using a boosting procedure. In [1],
an approach to learning the bandwidth parameter of an rbf-kernel for spectral clustering is
studied.

The paper is organized as follows: section 2 introduces the nmf-based clustering method
combined with a data-source weighting (section 3). Section 4 discusses an out-of-sample
extension allowing us topredictassignments and to employ thestability principlefor model
selection. Experimental evidence in favor of our approach is given in section 5.

2 Clustering by Non-Negative Matrix Factorization

Suppose we want to group a finite set of objectsOn := {o1, . . . , on}. Usually, there are
multiple ways of measuring the similarity between different objects. Such relations give
rise to similaritiessij := s(oi, oj) 1 where we assume non-negativitysij ≥ 0, symmetry
sji = sij , and boundednesssij < ∞. Forn objects, we summarize the similarity data in a
n×n matrixS = (sij) which is re-normalized toP = S/1t

nS1n, where1n := (1, . . . , 1)t.
The re-normalized similarities can be interpreted as the probability of thejoint occurrence
of objectsi, j.

We aim now at finding a non-negative matrix factorization ofP ∈ [0, 1]n×n into a product
WHt of the n × k matricesW andH with non-negative entries for which additionally
holds1t

nW1k = 1 andHt1n = 1k, wherek denotes the number of clusters. That is,
one aims at explaining the overall probability for a co-occurrence by a latent cause, the
unobserved classes. The constraints ensure, that the entries of both,W andH, can be
considered as probabilities: the entrywiν of W is the joint probabilityq(i, ν) of object
i and classν whereashjk in H is the probabilityq(j|ν). This model implicitly assumes
independence of objecti andj conditioned onν. Given a factorization ofP in W andH,
we can use the maximum a posteriori estimate,arg maxν hiν

∑
j wjν , to arrive at ahard

assignment of objects to classes.

In order to obtain a factorization, weminimize the cross-entropy

C(P‖WHt) := −
∑
i,j

pij log
∑

ν

wiνhjν (1)

which becomes minimaliff P = WHt 2 and is not convex inW andH together. Note, that
the factorization is not necessarily unique. We resort to a local optimization scheme, which
is inspired by the Expectation-Maximization (EM) algorithm: Letτνij ≥ 0 with

∑
ν τνij =

1. Then, by the convexity of− log x, we obtain− log
∑

ν wiνhjν ≤ −
∑

ν τνij log wiνhjν

τνij
,

1In the following, we represent objects by their indices.
2The Kullback-Leibler divergence isD(P‖WHt) = −H(P)+C(P‖WHt) ≥ 0 with equality

iff P = WHt.



which yields the relaxed objective function:

C̃(P‖WHt) := −
∑
i,j,ν

pijτνij log wiνhjν + τνij log τνij ≥ C(P‖WHt). (2)

With this relaxation, we can employ analternating minimizationscheme for minimizing
the bound onC. As in EM, one iterates

1. GivenW andH, minimizeC̃ w.r.t. τνij

2. Given the valuesτνij , find estimates forW andH by minimizingC̃.

until convergence, which produces a sequence of estimates

τ
(t)
νij =

w
(t)
iν h

(t)
jν∑

µ w
(t)
iµ h

(t)
jµ

, w
(t+1)
iν =

∑
j

pijτ
(t)
νij , h

(t+1)
jν =

∑
i pijτ

(t)
νij∑

a,b pabτ
(t)
νab

(3)

that converges to a local minimum of̃C. This is an instance of an MM algorithm [8]. We
use the conventionhjν = 0 whenever

∑
i,j pijτνij = 0. The per-iteration complexity is

O(n2).

3 Fusing Multiple Data Sources

Measuring the similarity of objects in, say,L different ways results inL normalized simi-
larity matricesP1, . . . ,PL. We introduce now weightsαl, 1 ≤ l ≤ L, with

∑
l αl = 1. For

fixed ααα = (αl) ∈ [0, 1]L, the aggregated and normalized similarity becomes the convex
combinationP̄ =

∑
l αlPl. Hence,p̄ij is a mixtureof individual similaritiesp

(l)
ij , i.e. a

mixture of different explanations. Again, we seek a good factorization ofP̄ by minimizing
the cross-entropy, which then becomes

min
ααα,W,H

Eααα

[
C(Pl‖WHt)

]
(4)

whereEααα[fl] =
∑

l αlfl denotes the expectation w.r.t. the discrete distributionααα. The
same relaxation as in the last section can be used, i.e. for allααα, W and H, we have
Eααα [C(Pl‖WHt)] ≤ Eααα[C̃(Pl‖WHt)]. Hence, we can employ a slightly modified,
nestedalternating minimization approach: Given fixedααα, obtain estimatesW andH using
the relaxation of the last section. The update equations change to

w
(t+1)
iν =

∑
l

αl

∑
j

p
(l)
ij τ

(t)
νij , h

(t+1)
jν =

∑
l αl

∑
i p

(l)
ij τ

(t)
νij∑

l αl

∑
i,j p

(l)
ij τ

(t)
νij

. (5)

Given the current estimates ofW andH, we could minimize the objective in equation (4)
w.r.t. ααα subject to the constraint‖ααα‖1 = 1. To this end, setcl := C(Pl‖WHt) and let
c = (cl)l. Minimizing the expression in equation (4) subject to the constraints

∑
l αl = 1

andααα � 0, therefore, becomes alinear program (LP)minααα ctααα such that1t
Lααα = 1, ααα � 0,

where� denotes the element-wise≥-relation. The LP solution is very sparse since the opti-
mal solutions for the linear program lie on the corners of the simplex in the positive orthant
spanned by the constraints. In particular, it lacks a means to control thesparsenessof the
coefficientsααα. We, therefore, use a maximum entropy approach ([6]) for sparseness control:
the entropy is upper bounded bylog L and measures the sparseness of the vectorααα, since
the lower the entropy the more peaked the distributionααα can be. Hence, bylower bounding
the entropy, we specify the maximal admissible sparseness. This approach is reasonable
as we actually want to combinemultiple (not only identify one) information sources but
the best fit in an unsupervised problem will be usually obtained by choosing only a single



source. Thus, we modify the objective originally given in eq. (4) to the entropy-regularized
problemEααα[C̃(Pl‖WHt)] − ηH(ααα), so that the mathematical program given above be-
comes

min
ααα

ctααα− ηH(ααα) s.t. 1t
Lααα = 1, ααα � 0, (6)

whereH denotes the (discrete) entropy andη ∈ R+ is a positive Lagrange parameter. The
optimization problem in eq. (6) has an analytical solution, namely the Gibbs distribution

αl ∝ exp(−cl/η) (7)

For η → ∞ one obtainsαl = 1/L, while for η → 0, the LP solution is recovered and the
estimates become the sparser the more the individualcl differ. Put differently, the parameter
η enables us to explore the space of different similarity combinations. The issue of selecting
a reasonable value for the parameterη will be discussed in the next section.

Iterating this nested procedure will yield alocally optimal solution to the problem of mini-
mizing the entropy-constrained objective, since (i) we obtain a local minimum of the mod-
ified objective function and (ii) solving the outer optimization problem can only further
decreasethe entropy-constrained objective function.

4 Generalization and Model Selection

In this section, we introduce an out-of-sample extension that allows us to classify objects,
that have not been used for learning the parametersααα, W andH. The extension mech-
anism can be seen as in spirit of the Nyström extension (c.f. [16]). Introducing such a
generalization mechanism is worthwhile for two reasons: (i) To speed-up the computation
if the numbern of objects under consideration is very large: By selecting a small subset
of m � n objects for the initial fit followed by the application of a computationally less
expensive prediction step, one can realize such a speed-up. (ii) The free parameters of the
approach, the number of clustersk as well as the sparseness control parameterη, can be
estimated using a re-sampling-based stability assessment that relies on the ability of an
algorithm to generalize to previously unseen objects.

Out-of-Sample Extension: Suppose we have to predict class memberships forr (= n−
m in the hold-out case) additional objects in ther×m matrix S̃l. Given the decomposition
intoW andH, letzik be the “posterior” estimated for thei-th object in the data set used for
the original fit, i.e.ziν ∝ hiν

∑
j wjν . We can express the weighted, normalized similarity

between a new objecto and objecti asp̂io :=
∑

l αls̃
(l)
oi /

∑
l,j αls̃

(l)
oj . Weapproximatenow

zoν for a new objecto by

ẑoν =
∑

i

ziν p̂io, (8)

which amounts to aninterpolationof thezoν . These values can be obtained using the orig-
inally computedziν which are weighted according to their similarity between objecti and
o. In the analogy to the Nyström approximation, the(ziν) play the role of basis elements
while thep̂io amount to coefficients in the basis approximation. The prediction procedure
requiresO(mr(l + r + k)) steps.

Model Selection: The approach presented so far has two free parameters, the number
of classesk and the sparseness penaltyη. In [9], a method for determining the number of
classes has been introduced, that assesses the variability of clustering solutions. Thus, we
focus on selectingη using stability. The assessment can be regarded as a generalization
of cross-validation, as it relies on the dissimilarity of solutions generated from multiple
sub-samples. In a second step, the solutions obtained from these samples are extended to
the complete data set by an appropriate predictor. Multiple classifications of the same data
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Figure 1: Results on the toy data set (1(a)): The stability assessment (1(b)) suggests the
rangeη ∈ {101, 102, 5 · 102}, which yield solutions matching the ground-truth. In 1(c), the
αl are depicted for a sub-sample andη in this range.

set are obtained, whose similarity can be measured. For two clustering solutionsY,Y′ ∈
{1, . . . , k}n, we define their disagreement as

d(Y,Y′) = min
π∈Sk

1
n

n∑
i=1

I{yi 6=π(y′
i)} (9)

whereSk denotes the set of all permutation on sets of sizek andIA is the indicator func-
tion on the expressionA. The measure quantifies the 0-1 loss after the labels have been
permuted, so that the two clustering solutions are in the best possible agreement. Perfect
agreement up to a permutation of the labels impliesd(Y,Y′) = 0. The optimal permuta-
tion can be determined inO(k3) by phrasing the problem as a weighted bipartite matching
problem. Following the approach in [9], we select theη, given a pre-specified range of
admissible values, such that theaveragedisagreement observed onB sub-samples is min-
imal. In this sense, the entropy regularization mechanism guides the search for similarity
combinations leading to stable grouping solutions. Note that, multiple minima can occur
and may yield solutions emphasizing different aspects of the data.

5 Experimental Results and Discussion

The performance of our proposal is explored by analyzing toy and real world data. For
the model selection (sec. 4), we have usedB = 20 sub-samples with the proposed out-of-
sample extension for prediction. For the stability assessment, differentη have been chosen
by η ∈ {10−3, 10−2, 10−1, .5, 1, 101, 102, 5 ·102, 103, 104}. We compared our results with
NCut [15] and Lee and Seung’s two NMF algorithms [11] (which measure the approxi-
mation error of the factorization with (i) the KL divergence and (ii) the squared Frobenius
norm) applied to the uniform combination of similarities.

Toy Experiment: Figure 1(a) depicts a data set consisting of two nested rings, where
the clustering task consists of identifying each ring as a class. We used rbf-kernels
k(x,y) = exp(−‖x − y‖2/2σ2) for σ varying in {10−4, 10−3, 10−2, 100, 101} as well
as the path kernel introduced in [4]. All methodsfail when used with the individual ker-
nels except for the path-kernel. The non-trivial problem is to detect the correct structure
despite the disturbing influence of 5 un-informative kernels. Data sets of sizedn/5e have
been generated by sub-sampling. Figure 1(b) depicts the stability assessment, where we see
very small disagreements forη ∈ {101, 102, 5 · 102}. At the minimum, the solution almost
perfectly matches the ground-truth (1 error). A plot of the resultingααα-coefficients is given
in figure 1(c). NCut as well as the other nmf-methods lead to an error rate of≈ 0.5 when
applied to the uniformly combined similarities.
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Figure 2: Images for the segmentation experiments.

Image segmentation example:3 The next task consists of finding a reasonable segmen-
tation of the images depicted in figures 2(b) and 2(a). For both images, we measured local-
ized intensity histograms and additionally computed Gabor filter responses (e.g. [12]) on3
scales for4 different orientations. For each response image, the same histogramming pro-
cedure has been used. For all the histograms, we computed the pairwise Jensen-Shannon
divergence (e.g. [2]) for all pairs(i, j) of image sites and took the element-wise expo-
nential of the negative Jensen-Shannon divergences. The resulting similarity matrices have
been used as input for the nmf-based data fusion. For the sub-sampling,m = 500 objects
have been employed. Figures 3(a) (for the shell image) and 3(b) (for the bird image) show
the stability curves for these examples which exhibit minima for non-trivialη resulting in
non-uniformααα. Figure 3(c) depicts the resulting segmentation generated usingααα indicated
by the stability assessment, while 3(d) shows a segmentation result, whereααα is closer to the
uniform distribution but the stability score for the correspondingη is low. Again, we can see
that weighting the different similarity measurements has a beneficial effect, since it leads
to improved results. The comparison with the NCut result on the uniformly weighted data
(fig. 3(e)) confirms that a non-trivial weighting is desirable here. Note that we have used the
full data set with NCut. For, the image in fig. 2(b), we observe similar behavior: the stability
selected solution (fig. 3(f)) is more meaningful than the NCut solution (fig. 3(g)) obtained
on the uniformly weighted data. In this example, the intensity information dominates the
solution obtained on the uniformly combined similarities. However, the texture informa-
tion alone doesnot yield a sensible segmentation. Only the non-trivial combination, where
the influence of intensity information is decreased and that of the texture information is
increased, gives rise to the desired result. It is additionally noteworthy, that the prediction
mechanism employed works rather well: In both examples, it has been able to generalize
the segmentation fromm = 500 to more than3500 objects. However, artifacts resulting
from the subsampling-and-prediction procedure cannot always be avoided, as can be seen
in 3(f). They vanish, however, once the algorithm is re-applied to the full data (fig. 3(h)).

Clustering of Protein Sequences: Our final application is about the functional catego-
rization of yeast proteins. We partially adopted the data used in [7]4. Since several of the
3588 proteins belong tomore than onecategory, we extracted a subset of1579 proteins ex-
clusively belonging to one of the three categoriescell cycle + DNA processing,transcription
andprotein fate. This step ensures a clear ground-truth for comparison. Of the matrices used
in [7], we employed a Gauss Kernel derived from gene expression profiles, one derived
from Swiss-Waterman alignments, one obtained from comparisons of protein domains as
well as two diffusion kernels derived from protein-protein interaction data. Although the
data is not very discriminative for the3-class problem, the solutions generated on the data
combined using theααα for the most stableη lead to more than10% improvement w.r.t. the

3Only comparisons with NCut reported. The nmf results are slightly worse than those of NCut.
4The data is available athttp://noble.gs.washington.edu/proj/yeast/.



10−3 10−1 100 102 103
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

sparsity parameter η

av
g.

 d
is

ag
re

em
en

t

(a)

10−3 10−1 100 102 103

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

sparsity parameter η

av
g.

 d
is

ag
re

em
en

t

(b)

(c) (d) (e)

(f) (g) (h)

Figure 3: Stability plots and segmentation results for the images in 2(a) and 2(b) (see text).

ground-truth (the disagreement measure of section 4 is used) in comparison with the so-
lution obtained using the least stableη-parameter. The latter, however, was hardly better
than random guessing by having an overall disagreement of more than0.60 (more pre-
cisely,0.6392 ± 0.0455) on this data. For the most stableη, we observed a disagreement
around0.52 depending on the sub-sample (best0.5267 ± 0.0403). In this case, the largest
weight was assigned to the protein-protein interaction data. NCut and the two nmf meth-
ods proposed in [11] lead to rates0.5953, 0.6080 and0.6035, respectively, when applied
to the naive combination. Note, that the clustering results are comparable with some of
those obtained in [7], where the protein-protein interaction data has been used to construct
a (supervised) classifier.

6 Conclusion

This work introduced an approach to combining similarity data originating from multiple
sources for grouping a set of objects. Adopting a pairwise clustering perspective enables
a smooth integration of multiple similarity measurements. To be able to distinguish be-
tween desired and distractive information, a weighting mechanism is introduced leading
to a potentially sparse convex combination of the measurements. Here, an entropy con-
straint is employed to control the amount of sparseness actually allowed. A stability-based
model selection mechanism is used to select this free parameter. We emphasize, that this
procedure represents a completely unsupervised model selection strategy. The experimen-
tal evaluation on toy and real world data demonstrates that our proposal yields meaningful
partitions and is able to distinguish between desired and spurious structure in data.

Future work will focus on (i) improving the optimization of the proposed model, (ii) the



integration of additional constraints and (iii) the introduction of acluster-specificweighting
mechanism. The proposed method as well as its relation to other approaches discussed in
the literature is currently under further investigation.
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