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Abstract

Biased labelers are a systemic problem in crowdsourcing, and a comprehensive
toolbox for handling their responses is still being developed. A typical crowd-
sourcing application can be divided into three steps: data collection, data cura-
tion, and learning. At present these steps are often treated separately. We present
Bayesian Bias Mitigation for Crowdsourcing (BBMC), a Bayesian model to unify
all three. Most data curation methods account for the effects of labeler bias by
modeling all labels as coming from a single latent truth. Our model captures the
sources of bias by describing labelers as influenced by shared random effects.
This approach can account for more complex bias patterns that arise in ambigu-
ous or hard labeling tasks and allows us to merge data curation and learning into
a single computation. Active learning integrates data collection with learning, but
is commonly considered infeasible with Gibbs sampling inference. We propose a
general approximation strategy for Markov chains to efficiently quantify the effect
of a perturbation on the stationary distribution and specialize this approach to ac-
tive learning. Experiments show BBMC to outperform many common heuristics.

1 Introduction

Crowdsourcing is becoming an increasingly important methodology for collecting labeled data, as
demonstrated among others by Amazon Mechanical Turk, reCAPTCHA, Netflix, and the ESP game.
Motivated by the promise of a wealth of data that was previously impractical to gather, researchers
have focused in particular on Amazon Mechanical Turk as a platform for collecting label data [11,
12]. Unfortunately, the data collected from crowdsourcing services is often very dirty: Unhelpful
labelers may provide incorrect or biased responses that can have major, uncontrolled effects on
learning algorithms. Bias may be caused by personal preference, systematic misunderstanding of
the labeling task, lack of interest or varying levels of competence. Further, as soon as malicious
labelers try to exploit incentive schemes in the data collection cycle yet more forms of bias enter.

The typical crowdsourcing pipeline can be divided into three main steps: 1) Data collection. The
researcher farms the labeling tasks to a crowdsourcing service for annotation and possibly adds a
small set of gold standard labels. 2) Data curation. Since labels from the crowd are contaminated by
errors and bias, some filtering is applied to curate the data, possibly using the gold standard provided
by the researcher. 3) Learning. The final model is learned from the curated data.

At present these steps are often treated as separate. The data collection process is often viewed as
a black box which can only be minimally controlled. Although the potential for active learning to
make crowdsourcing much more cost effective and goal driven has been appreciated, research on
the topic is still in its infancy [4, 9, 17]. Similarly, data curation is in practice often still performed
as a preprocessing step, before feeding the data to a learning algorithm [6, 8, 10, 11, 12, 14]. We
believe that the lack of systematic solutions to these problems can make crowdsourcing brittle in
situations where labelers are arbitrarily biased or even malicious, such as when tasks are particularly
ambiguous/hard or when opinions or ratings are solicited.
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Our goal in the current paper is to show how crowdsourcing can be leveraged more effectively by
treating the overall pipeline within a Bayesian framework. We present Bayesian Bias Mitigation for
Crowdsourcing (BBMC) as a way to achieve this. BBMC makes two main contributions.

The first is a flexible latent feature model that describes each labeler’s idiosyncrasies through mul-
tiple shared factors and allows us to combine data curation and learning (steps 2 and 3 above)
into one inferential computation. Most of the literature accounts for the effects of labeler bias
by assuming a single, true latent labeling from which labelers report noisy observations of some
kind [2, 3, 4, 6, 8, 9, 10, 11, 15, 16, 17, 18]. This assumption is inappropriate when labels are so-
licited on subjective or ambiguous tasks (ratings, opinions, and preferences) or when learning must
proceed in the face of arbitrarily biased labelers. We believe that an unavoidable and necessary
extension of crowdsourcing allows multiple distinct (yet related) “true” labelings to co-exist, but
that at any one time we may be interested in learning about only one of these “truths.” Our BBMC
framework achieves this by modeling the sources of labeler bias through shared random effects.

Next, we want to perform active learning in this model to actively query labelers, thus integrating
step 1 with steps 2 and 3. Since our model requires Gibbs sampling for inference, a straightforward
application of active learning is infeasible: Each active learning step relies on many inferential
computations and would trigger a multitude of subordinate Gibbs samplers to be run within one
large Gibbs sampler. Our second contribution is a new methodology for solving this problem. The
basic idea is to approximate the stationary distribution of a perturbed Markov chain using that of
an unperturbed chain. We specialize this idea to active learning in our model and show that the
computations are efficient and that the resulting active learning strategy substantially outperforms
other active learning schemes.

The paper is organized as follows: We discuss related work in Section 2. In Section 3 we propose
the latent feature model for labelers and in Section 4 we discuss the inference procedure that com-
bines data curation and learning. Then we present a general method to approximate the stationary
distribution of perturbed Markov chains and apply it to derive an efficient active learning criterion
in Section 5. In Section 6 we present comparative results and we draw conclusions in Section 7.

2 Related Work

Relevant work on active learning in multi-teacher settings has been reported in [4, 9, 17]. Sheng
et al. [9] use the multiset of current labels with a random forest label model to score which task to
next solicit a repeat label for. The quality of the labeler providing the new label does not enter the
selection process. In contrast, Donmez et al. [4] actively choose the labeler to query next using a
formulation based on interval estimation, utilizing repeated labelings of tasks. The task to label next
is chosen separately from the labeler. In contrast, our BBMC framework can perform meaningful
inferences even without repeated labelings of tasks and treats the choices of which labeler to query
on which task as a joint choice in a Bayesian framework. Yan et al. [17] account for the effects of
labeler bias through a coin flip observation model that filters a latent label assignment, which in turn
is modeled through a logistic regression. As in [4], the labeler is chosen separately from the task
by solving two optimization problems. In other work on data collection strategies, Wais et al. [14]
require each labeler to first pass a screening test before they are allowed to label any more data. In
a similar manner, reputation systems of various forms are used to weed out historically unreliable
labelers before collecting data.

Consensus voting among multiple labels is a commonly used data curation method [12, 14]. It
works well when low levels of bias or noise are expected but becomes unreliable when labelers vary
greatly in quality [9]. Earlier work on learning from variable-quality teachers was revisited by Smyth
et al. [10] who looked at estimating the unknown true label for a task from a set of labelers of varying
quality without external gold standard signal. They used an EM strategy to iteratively estimate the
true label and the quality of the labelers. The work was extended to a Bayesian formulation by
Raykar et al. [8] who assign latent variables to labelers capturing their mislabeling probabilities.
Ipeirotis et al. [6] pointed out that a biased labeler who systematically mislabels tasks is still more
useful than a labeler who reports labels at random. A method is proposed that separates low quality
labelers from high quality, but biased labelers. Dekel and Shamir [3] propose a two-step process.
First, they filter labelers by how far they disagree from an estimated true label and then retrain the
model on the cleaned data. They give a generalization analysis for anticipated performance. In a
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similar vein, Dekel and Shamir [2] show that, under some assumptions, restricting each labeler’s
influence on a learned model can control the effect of low quality or malicious labelers. Together
with [8, 16, 18], [2] and [3] are among the recent lines of research to combine data curation and
learning. Work has also focused on using gold standard labels to determine labeler quality. Going
beyond simply counting tasks on which labelers disagree with the gold standard, Snow et al. [11]
estimate labeler quality in a Bayesian setting by comparing to the gold standard.

Lastly, collaborative filtering has looked extensively at completing sparse matrices of ratings [13].
Given some gold standard labels, collaborative filtering methods could in principle also be used to
curate data represented by a sparse label matrix. However, collaborative filtering generally does not
combine this inference with the learning of a labeler-specific model for prediction (step 3). Also,
with the exception of [19], active learning has not been studied in the collaborative filtering setting.

3 Modeling Labeler Bias

In this section we specify a Bayesian latent feature model that accounts for labeler bias and allows
us to combine data curation and learning into a single inferential calculation. For ease of exposition
we will focus on binary classification, but our method can be generalized. Suppose we solicited
labels for n tasks from m labelers. In practical settings it is unlikely that a task is labeled by more
than 3–10 labelers [14]. Let task descriptions xi ∈ Rd, i = 1, . . . , n, be collected in the matrix
X . The label responses are recorded in the matrix Y so that yi,l ∈ {−1, 0,+1} denotes the label
given to task i by labeler l. The special label 0 denotes that a task was not labeled. A researcher is
interested in learning a model that can be used to predict labels for new tasks. When consensus is
lacking among labelers, our desideratum is to predict the labels that the researcher (or some other
expert) would have assigned, as opposed to labels from an arbitrary labeler in the crowd. In this
situation it makes sense to stratify the labelers in some way. To facilitate this, the researcher r
provides gold standard labels in column r of Y to a small subset of the tasks. Loosely speaking,
the gold standard allows our model to curate the data by softly combining labels from those labelers
whose responses will useful in predicting r’s remaining labels. It is important to note that our model
is entirely symmetric in the role of the researcher and labelers. If instead we were interested in
predicting labels for labeler l, we would treat column l as containing the gold standard labels. The
researcher r is just another labeler, the only distinction being that we wish to learn a model that
predicts r’s labels. To simplify our presentation, we will accordingly refer to labelers in the crowd
and the researcher occasionally just as “labelers,” indexed by l, and only use the distinguishing index
r when necessary. We account for each labeler l’s idiosyncrasies by assigning a parameter βl ∈ Rd
to l and modeling labels yi,l, i = 1, . . . , n, through a probit model p(yi,l|xi, βl) = Φ(yi,lx

>
i βl),

where Φ(·) is the standard normal CDF. This section describes a joint Bayesian prior on parameters
βl that allows for parameter sharing; two labelers that share parameters have similar responses. In
the context of this model, the two-step process of data curation and learning a model that predicts
r’s labels is reduced to posterior inference on βr given X and Y . Inference softly integrates labels
from relevant labelers, while at the same time allowing us to predict r’s remaining labels.

3.1 Latent feature model

Labelers are not independent, so it makes sense to impose structure on the set of βl’s. Specifically,
each vector βl is modeled as the sum of a set of latent factors that are shared across the population.
Let zl be a latent binary vector for labeler l whose component zl,b indicates whether the latent
factor γb ∈ Rd contributes to βl. In principle, our model allows for an infinite number of distinct
factors (i.e., zl is infinitely long), as long as only a finite number of those factors is active (i.e.,∑∞
b=1 zl,b < ∞). Let γ = (γb)

∞
b=1 be the concatenation of the factors γb. Given a labeler’s vector

zl and factors γ we define the parameter βl =
∑∞
b=1 zl,bγb.

For multiple labelers we let the infinitely long matrix Z = (z1, . . . , zm)> collect the vectors zl and
define the index set of all observed labels L = {(i, l) : yi,l 6= 0}, so that the likelihood is

p(Y |X, γ, Z) =
∏

(i,l)∈L

p(yi,l|xi, γ, zl) =
∏

(i,l)∈L

Φ(yi,lx
>
i βl). (1)

To complete the model we need to specify priors for γ and Z. We define the prior distribution of
each γb to be a zero-mean Gaussian γb ∼ N (0, σ2I), and let Z be governed by an Indian Buffet
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Process (IBP) Z ∼ IBP(α), parameterized by α [5]. The IBP is a stochastic process on infinite
binary matrices consisting of vectors zl. A central property of the IBP is that with probability one, a
sampled matrix Z contains only a finite number of nonzero entries, thus satisfying our requirement
that

∑∞
b=1 zl,b < ∞. In the context of our model this means that when working with finite data,

with probability one only a finite set of features is active across all labelers. To simplify notation in
subsequent sections, we use this observation and collapse an infinite matrix Z and vector γ to finite
dimensional equivalents. From now on, we think of Z as the finite matrix having all zero-columns
removed. Similarly, we think of γ as having all blocks γb corresponding to zero-columns in the
original matrix Z removed. With probability one, the number of columns K(Z) of Z is finite so we
may write βl =

∑K(Z)
b=1 zl,bγb , Z>l γ, with Zl = zl ⊗ I the Kronecker product of zl and I .

4 Inference: Data Curation and Learning

We noted before that our model combines data curation and learning in a single inferential compu-
tation. In this section we lay out the details of a Gibbs sampler for achieving this. Given a task j
which was not labeled by r (and possibly no other labeler), we need the predictive probability

p(yj,r = +1|X,Y ) =

∫
p(yj,r = +1|xj , βr)p(βr|X,Y )dβr. (2)

To approximate this probability we need to gather samples from the posterior p(βr|Y,X). Equiv-
alently, since βr = Z>r γ, we need samples from the posterior p(γ, zr|Y,X). Because latent fac-
tors can be shared across multiple labelers, the posterior will softly absorb label information from
labelers whose latent factors tend to be similar to those of the researcher r. Thus, Bayesian infer-
ence p(βr|Y,X) automatically combines data curation and learning by weighting label information
through an inferred sharing structure. Importantly, the posterior is informative even when no labeler
in the crowd labeled any of the tasks the researcher labeled.

4.1 Gibbs sampling

For Gibbs sampling in the probit model one commonly augments the likelihood in Eq. (1) with
intermediate random variables T = {ti,l : yi,l 6= 0}. The generative model for the label yi,l given
xi, γ and zl first samples ti,l from a Gaussian N (β>l xi, 1). Conditioned on ti,l, the label is then
defined as yi,l = 21[ti,l > 0] − 1. Figure 1(a) summarizes the augmented graphical model by
letting β denote the collection of βl variables. We are interested in sampling from p(γ, zr|Y,X).
The Gibbs sampler for this lives in the joint space of T, γ, Z and samples iteratively from the three
conditional distributions p(T |X, γ, Z), p(γ|X,Z, T ) and p(Z|γ,X, Y ). The different steps are:

Sampling T given X, γ, Z: We independently sample elements of T given X, γ, Z from a trun-
cated normal as

(ti,l|X, γ, Z) ∼ N yi,l(ti,l|γ>Zlxi, 1), (3)

where we use N−1(t|µ, 1) and N+1(t|µ, 1) to indicate the density of the negative- and positive-
orthant-truncated normal with mean µ and variance 1, respectively, evaluated at t.

Sampling γ given X,Z, T : Straightforward calculations show that conditional sampling of γ
given X,Z, T follows a multivariate Gaussian

(γ|X,Z, T ) ∼ N (γ|µ,Σ), (4)

where

Σ−1 =
I

σ2
+
∑

(i,l)∈L

Zlxix
>
i Z
>
l µ = Σ

∑
(i,l)∈L

Zlxiti,l. (5)
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Figure 1: (a) A graphical model of the augmented latent feature model. Each node corresponds to
a collection of random variables in the model. (b) A schematic of our approximation scheme. The
top chain indicates an unperturbed Markov chain, the lower a perturbed Markov chain. Rather than
sampling from the lower chain directly (dashed arrows), we transform samples from the top chain
to approximate samples from the lower (wavy arrows).

Sampling Z given γ,X, Y : Finally, for inference on Z given γ,X, Y we may use techniques
outlined in [5]. We are interested in performing active learning in our model, so it is imperative
to keep the conditional sampling calculations as compact as possible. One simple way to achieve
this is to work with a finite-dimensional approximation to the IBP: We constrain Z to be an m×K
matrix, assigning each labeler at most K active latent features. This is not a substantial limitation;
in practice the truncated IBP often performs comparably, and for K →∞ converges in distribution
to the full IBP [5]. Let m−l,b =

∑
l′ 6=l zl′,b be the number of labelers, excluding l, with feature b

active. Define βl(zl,b) = zl,bγb +
∑
b′ 6=b zl,b′γb′ as the parameter βl either specifically including

or excluding γb. Now if we let z−l,b be the column b of Z, excluding element zl,b then updated
elements of Z can be sampled one by one as

p(zl,b = 1|z−l,b) =
m−l,b + α

K

n+ α
K

(6)

p(zl,b|z−l,b, γ,X, Y ) ∝ p(zl,b|z−l,b)
∏

i:yi,l 6=0

Φ(yi,lx
>
i βl(zl,b)). (7)

After reaching approximate stationarity, we collect samples (γs, Zs) , s = 1, . . . , S, from the Gibbs
sampler as they are generated. We then compute samples from p(βr|Y,X) by writing βsr = Zsr

>γs.

5 Active Learning

The previous section outlined how, given a small set of gold standard labels from r, the remaining
labels can be predicted via posterior inference p(βr|Y,X). In this section we take an active learning
approach [1, 7] to incrementally add labels to Y so as to quickly learn about βr while reducing data
acquisition costs. Active learning allows us to guide the data collection process through model in-
ferences, thus integrating the data collection, data curation and learning steps of the crowdsourcing
pipeline. We envision a unified system that automatically asks for more labels from those labelers
on those tasks that are most useful in inferring βr. This is in contrast to [9], where labelers cannot be
targeted with tasks. It is also unlike [4] since we can let labelers be arbitrarily unhelpful, and differs
from [17] which assumes a single latent truth.

A well-known active learning criterion popularized by Lindley [7] is to label that task next which
maximizes the prior-posterior reduction in entropy of an inferential quantity of interest. The original
formulation has been generalized beyond entropy to arbitrary utility functionals U(·) of the updated
posterior probability [1]. The functional U(·) is a model parameter that can depend on the type of
inferences we are interested in. In our particular setup, we wish to infer the parameter βr to predict
labels for the researcher r. Suppose we chose to solicit a label for task i′ from labeler l′, which pro-
duced label yi′,l′ . The utility of this observation is U(p(βr|yi′,l′)). The average utility of receiving
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a label on task i′ from labeler l′ is I((i′, l′) , p(βr)) = E(U(p(βr|yi′,l′))), where the expectation
is taken with respect to the predictive label probabilities p(yi′,l′ |xi′) =

∫
p(yi′,l′ |xi′ , βl′)p(βl′)dβl′ .

Active learning chooses that pair (i′, l′) which maximizes I((i′, l′) , p(βr)). If we want to choose
the next task for the researcher to label, we constrain l′ = r. To query the crowd we let l′ 6= r. Sim-
ilarly, we can constrain i′ to any particular value or subset of interest. For the following discussion
we let U(p(βr|yi′,l′)) = ||Ep(βr)(βr)−Ep(βr|yi′,l′ )(βr)||2 be the `2 norm of the difference in means
of βr. Picking the task that shifts the posterior mean the most is similar in spirit to the common
criterion of maximizing the Kullback-Leibler divergence between the prior and posterior.

5.1 Active learning for MCMC inference

A straightforward application of active learning is impractical using Gibbs sampling, because to
score a single task-labeler pair (i′, l′) we would have to run two Gibbs samplers (one for each of
the two possible labels) in order to approximate the updated posterior distributions. Suppose we
started with k task-labeler pairs that active learning could choose from. Depending on the number
of selections we wish to perform, we would have to run k . g . k2 Gibbs samplers within the
topmost Gibbs sampler of Section 4. Clearly, such a scoring approach is not practical. To solve
this problem, we propose a general purpose strategy to approximate the stationary distribution of
a perturbed Markov chain using that of an unperturbed Markov chain. The approximation allows
efficient active learning in our model that outperforms naı̈ve scoring both in speed and quality.

The main idea can be summarized as follows. Suppose we have two Markov chains, p(βtr|βt−1
r )

and p̂(β̂tr|β̂t−1
r ), the latter of which is a slight perturbation of the former. Denote the stationary

distributions by p∞(βr) and p̂∞(β̂r), respectively. If we are given the stationary distribution p∞(βr)
of the unperturbed chain, then we propose to approximate the perturbed stationary distribution by

p̂∞(β̂r) ≈
∫
p̂(β̂r|βr)p∞(βr)dβr. (8)

If p̂(β̂t|β̂t−1) = p(β̂t|β̂t−1) the approximation is exact. Our hope is that if the perturbation is
small enough the above approximation is good. To use this practically with MCMC, we first run the
unperturbed MCMC chain to approximate stationarity, and then use samples of p∞(βr) to compute
approximate samples from p̂∞(β̂r). Figure 1(b) shows this scheme visually.

To map this idea to our active learning setup we conceptually let the unperturbed chain p(βtr|βt−1
r )

be the chain on βr induced by the Gibbs sampler in Section 4. The perturbed chain p̂(β̂tr|β̂t−1
r )

represents the chain where we have added a new observation yi′,l′ to the measured data. If we have
S samples βsr from p∞(βr), then we approximate the perturbed distribution as

p̂∞(β̂r) ≈
1

S

S∑
s=1

p̂(β̂r|βsr), (9)

and the active learning score as U(p(βr|yi′,l′)) ≈ U
(
p̂∞(β̂r)

)
. To further specialize this strategy

to our model we first rewrite the Gibbs sampler outlined in Section 4. We suppress mentions of
X and Y in the subsequent presentation. Instead of first sampling

(
T |γt−1, Z

)
from Eq. (3), and

then sampling (γt|T,Z) from Eq. (4), we combine them into one larger sampling step
(
γt|γt−1, Z

)
.

Starting from a fixed γt−1 and Z we sample from γt as

(
γt|γt−1, Z

) d
= ηΣ + µ = Σ

ησ−2I +
∑

(i,l)∈L

Zlxi
[
η1 +

(
ti,l|γt−1, Z

)], (10)

where ηΣ is a zero-mean Gaussian with covariance Σ, and η1 a standard normal random variable. If it
were feasible, we could also absorb the intermediate sampling of Z into the notation and write down
a single induced Markov chain

(
βtr|βt−1

r

)
, as referred to in Eqs. (8) and (9). As this is not possible,

we will account forZ separately. We see that the effect of adding a new observation yi′,l′ is to perturb
the Markov chain in Eq. (10) by adding an element to L. Supposing we added this new observation
at time t − 1, let Σ(i′,l′) be defined as Σ but with (i′, l′) added to L. Straightforward calculations
using the Sherman-Morrison-Woodbury identity on Σ(i′,l′) give that, conditioned on γt−1, Z, we can
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(a) (b) (c)

Figure 2: Examples of easy and ambiguous labeling tasks. We asked labelers to determine if the
triangle is to the left or above the square.

write the first step of the perturbed Gibbs sampler as a function of the unperturbed Gibbs sampler.
If we let Ai′,l′ = ΣZl′xi′x

>
i′Z
>
l′ /(1 + x>i′Z

>
l′ ΣZl′xi′) for compactness, then we yield(

γt(i′,l′)|γ
t−1, Z

)
d
= (I −Ai′,l′)

(
γt|γt−1, Z

)
+ Σ(i′,l′)Zl′xi′

[
η1 +

(
ti′,l′ |γt−1, Z

)]
. (11)

To approximate the utility U(·) we now appeal to Eq. (9) and estimate the difference in means using
recent samples γs, Zs, s = 1, . . . , S from the unperturbed sampler. In terms of Eqs. (10) and (11),

U(p(βr|yi′,l′)) =
∣∣∣∣∣∣Ep(βr)(βr)− Ep(βr|yi′,l′ )(βr)

∣∣∣∣∣∣
2

(12)

≈

∣∣∣∣∣
∣∣∣∣∣E
(

1

S − 1

S∑
s=2

Zs−1
r
> [(

γ|γs−1, Zs−1
)
−
(
γ(i′,l′)|γs−1, Zs−1

)])∣∣∣∣∣
∣∣∣∣∣
2

. (13)

By simple cancellations and expectations of truncated normal variables we can reduce the above
expression to a sample average of elementary calculations. Note that the sample γs is a realization
of
(
γ|γs−1, Zs−1

)
. We have used this to approximate E

((
γ|γs−1, Zs−1

))
≈ γs. Thus, the sum

only runs over S − 1 terms. In principle the exact expectation could also be computed. The final
utility calculation is straightforward but too long to expand. Finally, we use samples from the Gibbs
sampler to approximate p(yi′,l′ |xi′) and estimate I((i′, l′) , p(βr)) for querying labeler l′ on task i′.

6 Experimental Results

We evaluated our active learning method on an ambiguous localization task which asked labelers on
Amazon Mechanical Turk to determine if a triangle was to the left or above a rectangle. Examples
are shown in Figure 6. Tasks such as these are important for learning computer vision models of
perception. Rotation, translation and scale, as well as aspect ratios, were pseudo-randomly sampled
in a way that produced ambiguous tasks. We expected labelers to use centroids, extreme points
and object sizes in different ways to solve the tasks, thus leading to structurally biased responses.
Additionally, our model will also have to deal with other forms of noise and bias. The gold standard
was to compare only the centroids of the two objects. For training we generated 1000 labeling tasks
and solicited 3 labels for each task. Tasks were solved by 75 labelers with moderate disagreement.
To emphasize our results, we retained only the subset of 523 tasks with disagreement. We provided
about 60 gold standard labels to BBMC and then performed inference and active learning on βr so as
to learn a predictive model emulating gold standard labels. We evaluated methods based on the log
likelihood and error rate on a held-out test set of 1101 datapoints.1 All results shown in Table 1 were
averaged across 10 random restarts. We considered two scenarios. The first compares our model to
other methods when no active learning is performed. This will demonstrate the advantages of the
latent feature model presented in Sections 3 and 4. The second scenario compares performance of
our active learning scheme to various other methods. This will highlight the viability of our overall
scheme presented in Section 5 that ties data collection together with data curation and learning.

First we show performance without active learning. Here only about 60 gold standard labels and all
the labeler data is available for training. The results are shown in the top three rows of Table 1. Our
method, “BBMC,” outperforms the other two methods by a large margin. The BBMC scores were
computed by running the Gibbs sampler of Section 4 with 2000 iterations burnin and then computing

1The test set was similarly constructed by selecting from 2000 tasks those on which three labelers disagreed.
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Final Loglik Final Error
GOLD −3716± 1695 0.0547± 0.0102
CONS −421.1± 2.6 0.0935± 0.0031
BBMC −219.1± 3.1 0.0309± 0.0033

GOLD-ACT −1957± 696 0.0290± 0.0037
CONS-ACT −396.1± 3.6 0.0906± 0.0024
RAND-ACT −186.0± 2.2 0.0292± 0.0029

DIS-ACT −198.3± 5.8 0.0392± 0.0052
MCMC-ACT −196.1± 6.7 0.0492± 0.0050
BBMC-ACT −160.8± 3.9 0.0188± 0.0018

Table 1: The top three rows give results without and the bottom six rows results with active learning.

a predictive model by averaging over the next 20000 iterations. The alternatives include “GOLD,”
which is a logistic regression trained only on gold standard labels, and “CONS,” which evaluates
logistic regression trained on the overall majority consensus. Training on the gold standard only
often overfits, and training on the consensus systematically misleads.

Next, we evaluate our active learning method. As before, we seed the model with about 60 gold
standard labels. We repeatedly select a new task for which to receive a gold standard label from the
researcher. That is, for this experiment we constrained active learning to use l′ = r. Of course, in our
framework we could have just as easily queried labelers in the crowd. Following 2000 steps burnin
we performed active learning every 200 iterations for a total of 100 selections. The reported scores
were computed by estimating a predictive model from the last 200 iterations. The results are shown
in the lower six rows of Table 1. Our model with active learning, “BBMC-ACT,” outperforms all
alternatives. The first alternative we compared against, “MCMC-ACT,” does active learning with the
MCMC-based scoring method outlined in Section 5. In line with our utility U(·) this method scores
a task by running two Gibbs samplers within the overall Gibbs sampler and then approximates
the expected mean difference of βr. Due to time constraints, we could only afford to run each
subordinate chain for 10 steps. Even then, this method requires on the order of 10 × 83500 Gibbs
sampling iterations for 100 active learning steps. It takes about 11 hours to run the entire chain,
while BBMC only requires 2.5 hours. The MCMC method performs very poorly. This demonstrates
our point: Since the MCMC method computes a similar quantity as our approximation, it should
perform similarly given enough iterations in each subchain. However, 10 iterations is not nearly
enough time for the scoring chains to mix and also quite a small number to compute empirical
averages, leading to decreased performance. A more realistic alternative to our model is “DIS-ACT,”
which picks one of the tasks with most labeler disagreement to label next. Lastly, the baseline
alternatives include “GOLD-ACT” and “CONS-ACT” which pick a random task to label and then
learn logistic regressions on the gold standard or consensus labels respectively. Those results can
be directly compared against “RAND-ACT,” which uses our model and inference procedure but
similarly selects tasks at random. In line with our earlier evaluation, we still outperform these two
methods when effectively no active learning is done.

7 Conclusions

We have presented Bayesian Bias Mitigation for Crowdsourcing (BBMC) as a framework to unify
the three main steps in the crowdsourcing pipeline: data collection, data curation and learning.
Our model captures labeler bias through a flexible latent feature model and conceives of the en-
tire pipeline in terms of probabilistic inference. An important contribution is a general purpose
approximation strategy for Markov chains that allows us to efficiently perform active learning, de-
spite relying on Gibbs sampling for inference. Our experiments show that BBMC is fast and greatly
outperforms a number of commonly used alternatives.
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