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Abstract

We study the fixed-support Wasserstein barycenter problem (FS-WBP), which con-
sists in computing the Wasserstein barycenter of m discrete probability measures
supported on a finite metric space of size n. We show first that the constraint matrix
arising from the standard linear programming (LP) representation of the FS-WBP
is not totally unimodular when m ≥ 3 and n ≥ 3. This result resolves an open
question pertaining to the relationship between the FS-WBP and the minimum-cost
flow (MCF) problem since it proves that the FS-WBP in the standard LP form is
not an MCF problem when m ≥ 3 and n ≥ 3. We also develop a provably fast
deterministic variant of the celebrated iterative Bregman projection (IBP) algorithm,
named FASTIBP, with a complexity bound of Õ(mn7/3ε−4/3), where ε ∈ (0, 1)
is the desired tolerance. This complexity bound is better than the best known
complexity bound of Õ(mn2ε−2) for the IBP algorithm in terms of ε, and that
of Õ(mn5/2ε−1) from accelerated alternating minimization algorithm or acceler-
ated primal-dual adaptive gradient algorithm in terms of n. Finally, we conduct
extensive experiments with both synthetic data and real images and demonstrate
the favorable performance of the FASTIBP algorithm in practice.

1 Introduction

Over the past decade, the Wasserstein barycenter problem [1] (WBP) has served as a foundation for
theoretical analysis in a wide range of fields, including economics [12, 14] and physics [11, 16, 53]
to statistics [39, 30, 51], image and shape analysis [47, 7, 8] and machine learning [19]. The
WBP problem is related to the optimal transport (OT) problem, in that both are based on the
Wasserstein distance, but the WBP is significantly harder. It requires the minimization of the sum
of Wasserstein distances, and typically considers m > 2 probability measures. Its closest relative
is the multimarginal optimal transport problem [25], which also compares m measures; see Villani
[55] for a comprehensive treatment of OT theory and Peyré and Cuturi [44] for an introduction of OT
applications and algorithms.

An ongoing focus of work in both the WBP and the OT problem is the design of fast algorithms
for computing the relevant distances and optima and the delineation of lower bounds that capture
the computational hardness of these problems [44]. For the OT problem, Cuturi [18] introduced the
Sinkhorn algorithm which has triggered significant progress [20, 27, 2, 23, 6, 37, 33, 46, 31, 38].
Variants of the Sinkhorn and Greenkhorn algorithms [2, 23, 37] continue to serve as the baseline
approaches in practice. As for the theoretical complexity, the best bound is Õ(n2ε−1) [6, 46, 33, 31].
Moreover, Lin et al. [36] provided a complexity bound for the multimarginal OT problem.
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There has been significant effort devoted to the development of fast algorithms in the case of m > 2
discrete probability measures [47, 19, 13, 7, 4, 3, 52, 57, 10, 45, 15, 54, 22, 56, 34, 32, 29, 26, 9].
This work has provided the foundation for progress on the WBP. An important step forward was the
proposal of Cuturi and Doucet [19] to smooth the WBP using an entropic regularization, leading
to a simple gradient-descent scheme that was later improved and generalized under the name of the
iterative Bregman projection (IBP) algorithm [4, 32]. Further progress includes the semi-dual gradient
descent [20, 21], accelerated primal-dual gradient descent (APDAGD) [22, 32], accelerated IBP [29],
stochastic gradient descent [15], distributed and parallel gradient descent [52, 54], alternating direction
method of multipliers (ADMM) [57, 56] and interior-point algorithm [26]. Very recently, Kroshnin
et al. [32] and Guminov et al. [29] have proposed a novel primal-dual framework that made it possible
to derive complexity bounds for various algorithms, including IBP, accelerated IBP and APDAGD.

Concerning the computational hardness of the WBP with free support, Anderes et al. [3] proved that
the barycenter of m empirical measures is also an empirical measure with support whose cardinality
is at most the size of the union of the support of the m measures, minus m − 1. When m = 2
and the measures are bound and the support is fixed, the computation of the barycenter amounts
to solving a network flow problem on a directed graph. Borgwardt and Patterson [9] proved that
finding a barycenter of sparse support is NP hard even in the simple setting when m = 3. However,
their analysis cannot be extended to the fixed-support WBP, where the supports of the constituent m
probability measures are prespecified.

Contribution. In this paper, we revisit the fixed-support Wasserstein barycenter problem (FS-
WBP) between m discrete probability measures supported on a prespecified set of n points. Our
contributions can be summarized as follows:

1. We prove that the FS-WBP in the standard LP form is not a minimum-cost flow (MCF)
problem in general. In particular, we show that the constraint matrix arising from the
standard LP representation of the FS-WBP is totally unimodular when m ≥ 3 and n = 2
but not totally unimodular when m ≥ 3 and n ≥ 3. Our results shed light on the necessity
of problem reformulation—e.g., entropic regularization [19, 4] and block reduction [26].

2. We propose a fast deterministic variant of the iterative Bregman projection (IBP) algorithm,
named FASTIBP, and provide a theoretical guarantee for the algorithm. Letting ε ∈ (0, 1)

denote the target tolerance, the complexity bound of the algorithm is Õ(mn7/3ε−4/3),
which improves the complexity bound of Õ(mn2ε−2) of the IBP algorithm [4] in terms
of ε and the complexity bound of Õ(mn5/2ε−1) from the accelerated IBP and APDAGD
algorithms in terms of n [32, 29]. We conduct experiments on synthetic and real datasets and
demonstrate that the FASTIBP algorithm achieves the favorable performance in practice.

Organization. In Section 2, we present the entropic-regularized FS-WBP and the dual problem. In
Section 3, we provide our computational hardness results for the FS-WBP in the standard LP form.
In Section 4, we propose and analyze the FASTIBP algorithm. We conduct experiments on synthetic
and real data in Section 5 and conclude in Section 6. All the proofs are deferred to Appendix.

Notation. We let [n] be the set {1, . . . , n} and Rn+ be all vectors in Rn with nonnegative components.
1n and 0n are the n-vectors of ones and zeros. ∆n stands for the probability simplex. For a function
f , we denote ∇f and ∇λf as the full gradient and the gradient with respect to λ. For x ∈ Rn and
1 ≤ p ≤ ∞, we write ‖x‖p for its `p-norm. For X ∈ Rn×n, vec (X) ∈ Rn2

and det(X) stand for
the vector representation and the determinant. r(X) = X1n and c(X) = X>1n. Let X,Y ∈ Rn×n,
the Frobenius and Kronecker inner product are denoted by 〈X,Y 〉 and X ⊗ Y . Given n and ε, the
notation a = O(b(n, ε)) stands for a ≤ C · b(n, ε) where C > 0 is independent of n and ε, and
a = Õ(b(n, ε)) indicates previous inequality where C depends on the logarithmic factors of n and ε.

2 Preliminaries and Technical Background

In this section, we introduce the setup of the fixed-support Wasserstein barycenter problem (FS-WBP),
starting with the linear programming (LP) presentation and entropic-regularized formulation and
including a specification of an approximate barycenter. All the proofs are deferred to Appendix D.
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2.1 Linear programming formulation

For p ≥ 1, let Pp(Ω) be the set of Borel probability measures on Ω with finite p-th moment. The
Wasserstein distance of order p ≥ 1 between µ, ν ∈ Pp(Ω) is defined by [55]:

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
Ω×Ω

dp(x,y) π(dx, dy)

)1/p

, (1)

where d(·, ·) is a metric on Ω and Π(µ, ν) is the set of couplings between µ and ν. Given a weight
vector (ω1, ω2, . . . , ωm) ∈ ∆m for m ≥ 2, the Wasserstein barycenter [1] of m probability measures
{µk}mk=1 is a solution of the following functional minimization problem

min
µ∈Pp(Ω)

m∑
k=1

ωkW
p
p (µ, µk). (2)

Because our goal is to provide computational schemes to approximately solve the WBP, we need to
provide a definition of an ε-approximate solution to the WBP.
Definition 2.1. The probability measure µ̂ ∈ Pp(Ω) is called an ε-approximate barycenter if∑m
k=1 ωkW

p
p (µ̂, µk) ≤

∑m
k=1 ωkW

p
p (µ?, µk) + ε where µ? is an optimal solution to problem (2).

There are two main settings: (i) free-support Wasserstein barycenter, namely, when we optimize both
the weights and supports of the barycenter in Eq. (2); and (ii) fixed-support Wasserstein barycenter,
namely, when the supports of the barycenter are obtained from those from the probability measures
{µk}mk=1 and we optimize the weights of the barycenter in Eq. (2).

The free-support WBP problem is notoriously difficult to solve. It can either be solved using a
solution to the multimarginal-OT (MOT) problem, as described in detail by Agueh and Carlier
[1], or approximated using alternative optimization techniques. Assuming that each measure is
supported on n distinct points, the WBP problem can be solved exactly by solving first a MOT, to
then compute (n − 1)m + 1 barycenters of points in Ω (these barycenters are exactly the support
of the barycentric measure). Solving a MOT is, however, equivalent to solving an LP with nm
variables and (n− 1)m+ 1 constraints. The other route, alternative optimization, requires specifying
an initial guess for the barycenter, a discrete measure supported on k weighted points (where k is
predefined). One can then proceed by updating the locations of µ (or even add new ones) to decrease
the objective function in Eq. (2), before changing their weights. In the Euclidean setting with p = 2,
the free-support WBP is closely related to the clustering problem, and equivalent to k-means when
m = 1 [19]. Whereas solving the free-support WBP using MOT results in a convex (yet intractable)
problem, the alternating mimimization approach is not, in very much the same way that the k-means
problem is not, and results in the minimization of a piece-wise quadratic function. On the other hand,
the fixed-support WBP is comparatively easier to solve, and as such has played a role in real-world
applications. For instance, in imaging sciences, pixels and voxels are supported on a predefined,
finite grid. In these applications, the barycenter and µk measures share the same support.

In view of this, throughout the remainder of the paper, we let (µk)mk=1 be discrete probability measures
and take the support points {xki }i∈[n] to be fixed. Since {µk}mk=1 have the fixed support, they are
fully characterized by the weights {uk}mk=1. Accordingly, the support of the barycenter {x̂i}i∈[n] is
also fixed and can be prespecified by {xki }i∈[n]. Given this setup, the FS-WBP between {µk}mk=1
has the following standard LP representation [19, 4, 44]:

min
{Xi}mi=1⊆R

n×n
+

m∑
k=1

ωk〈Ck, Xk〉, s.t. r(Xk) = uk for all k ∈ [m],
c(Xk+1) = c(Xk) for all k ∈ [m− 1].

(3)

where {Xk}mk=1 and {Ck}mk=1 ⊆ Rn×...×n+ denote a set of transportation plans and nonnegative
cost matrices and (Ck)ij = dp(xki , x̂j) for all k ∈ [m]. The fixed-support Wasserstein barycenter
u ∈ ∆n is determined by the weight

∑m
k=1 ωkc(Xk) and the support (x̂1, x̂2, . . . , x̂n).

From Eq. (3), the FS-WBP is an LP with 2mn− n equality constraints and mn2 variables. This has
inspired work on solving the FS-WBP using classical optimization algorithms [26, 56]. Although
progress has been made, the understanding of the structure of FS-WBP via this approach has remained
limited. Particularly, while the OT problem [55] is equivalent to a minimum-cost flow (MCF) problem,
it remains unknown whether the FS-WBP is a MCF problem even in the simplest setting when m = 2.
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2.2 Entropic regularized FS-WBP

Using Cuturi’s entropic approach to the OT problem [18], we define a regularized version of the
FS-WBP in Eq. (3), where an entropic regularization term is added to the Wasserstein barycenter
objective. The resulting formulation is as follows:

min
{Xi}mi=1⊆R

n×n
+

m∑
k=1

ωk(〈Ck, Xk〉 − ηH(Xk)), s.t. r(Xk) = uk for all k ∈ [m],
c(Xk+1) = c(Xk) for all k ∈ [m− 1].

(4)

where η > 0 is the parameter andH(X) := −〈X, log(X)−1n1>n 〉 denotes the entropic regularization
term. We refer to Eq. (4) as entropic regularized FS-WBP. When η is large, the optimal value of
entropic regularized FS-WBP may yield a poor approximation of the cost of the FS-WBP. To
guarantee a good approximation, we scale the parameter η as a function of the desired accuracy.
Definition 2.2. The probability vector û ∈ ∆n is called an ε-approximate barycenter if there exists
a feasible solution (X̂1, X̂2, . . . , X̂m) ∈ Rn×n+ × · · · × Rn×n+ for the FS-WBP in Eq. (3) such
that û =

∑m
k=1 ωkc(X̂k) for all k ∈ [m] and

∑m
k=1 ωk〈Ck, X̂k〉 ≤

∑m
k=1 ωk〈Ck, X?

k〉 + ε where
(X?

1 , X
?
2 , . . . , X

?
m) is an optimal solution of the FS-WBP in Eq. (3).

With these definitions in mind, we develop efficient algorithms for approximately solving the FS-WBP
where the dependence on m, n and ε is competitive to state-of-the-art algorithms [32, 29].

2.3 Dual entropic regularized FS-WBP

Using the duality theory of convex optimization [48], one dual form of entropic regularized FS-WBP
has been derived before [19, 32]. Differing from the usual 2-marginal or multimarginal OT [21, 36],
the dual entropic regularized FS-WBP is a convex optimization problem with an affine constraint set.
Formally, we have

min
λ,τ∈Rmn

ϕold(λ, τ) :=

m∑
k=1

ωk

 ∑
1≤i,j≤n

eλki+τkj−η
−1(Ck)ij − λ>k uk

 , s.t.
m∑
k=1

ωkτk = 0n. (5)

However, the objective function in Eq. (5) is not sufficiently smooth because of the sum of exponents.
This makes the acceleration very challenging. In order to alleviate this issue, we turn to another
smooth dual form of entropic-regularized FS-WBP as follows,

min
λ,τ∈Rmn

ϕ(λ, τ) :=

m∑
k=1

ωk
(

log(‖Bk(λk, τk)‖1)− λ>k uk
)
, s.t.

m∑
k=1

ωkτk = 0n. (6)

We call it the dual entropic-regularized FS-WBP problem and refer the interested reader to Appendix A
for a complete derivation of Eq. (6).
Remark 2.1. The first part of the objective function ϕ is in the form of the logarithm of sum of
exponents while the second part is a linear function. This is different from the objective function used
in previous dual entropic regularized OT problem in Eq. (5). We also note that Eq. (6) is a special
instance of a softmax minimization problem, and the objective function ϕ is known to be smooth [40].
Finally, we point out that the same problem was derived in the concurrent work by Guminov et al.
[29] and used for analyzing the accelerated alternating minimization algorithm.

2.4 Properties of dual entropic regularized FS-WBP

In this section, we present several useful properties of the dual entropic regularized MOT in Eq. (6).
In particular, there exists an optimal solution (λ?, τ?) which has an upper bound in `∞-norm.
Lemma 2.2. For the dual entropic regularized FS-WBP, let C̄ = max1≤k≤m ‖Ck‖∞ and ū =
min1≤k≤m,1≤j≤n ukj , there exists an optimal solution (λ?, τ?) such that the following `∞-norm
bound holds true:

‖λ?k‖∞ ≤ Rλ, ‖τ?k ‖∞ ≤ Rτ , for all k ∈ [m], (7)
where Rλ = 5η−1C̄ + log(n)− log(ū) and Rτ = 4η−1C̄.
Remark 2.3. Lemma 2.2 is analogous to [37, Lemma 3.2] for the OT problem. However, the dual
entropic-regularized FS-WBP is more complex and requires a novel constructive iterate, (λ?, τ?) =∑m
j=1 ωj(λ

j , τ j). Moreover, the techniques in Kroshnin et al. [32] are not applicable for the analysis
of the FASTIBP algorithm, and, accordingly, Lemma 2.2 is crucial for the analysis.
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The upper bound for the `∞-norm of the optimal solution of dual entropic-regularized FS-WBP in
Lemma 2.2 leads to the following straightforward consequence.

Corollary 2.4. For the dual entropic regularized FS-WBP, there exists an optimal solution (λ?, τ?)
such that for all k ∈ [m],

‖λ?k‖ ≤
√
nRλ, ‖τ?k ‖ ≤

√
nRτ , for all k ∈ [m], (8)

where Rλ, Rτ > 0 are defined in Lemma 2.2.

Finally, ϕ can be decomposed into the weighted sum of m functions and prove that each component
function ϕk has Lipschitz continuous gradient with the constant 4 in the following lemma.

Lemma 2.5. The following statement holds true, ϕ(λ, τ) =
∑m
k=1 ϕk(λk, τk) where ϕk(λk, τk) =

log(1>nBk(λk, τk)1n)− λ>k uk for all k ∈ [m]. Moreover, each ϕk has Lipschitz continuous gradient
in `2-norm and the Lipschitz constant is upper bounded by 4. Formally,

ϕ(λ′, τ ′)− ϕ(λ, τ) ≤
(
λ′ − λ
τ ′ − τ

)>
∇ϕ(λ, τ) + 2

(
m∑
k=1

ωk

∥∥∥∥(λ′k − λkτ ′k − τk

)∥∥∥∥2
)

for all k ∈ [m]. (9)

Remark 2.6. It is worthy noting that Lemma 2.5 exploits the decomposable structure of the dual
function ϕ, and gives the a weighted smoothness inequality. This inequality is necessary for deriving
the complexity bound which depends linearly on the number of probability measures.

3 Computational Hardness

In this section, we analyze the computational hardness of the FS-WBP in Eq. (3). After introducing
some characterization theorems in combinatorial optimization, we show that the FS-WBP in Eq. (3)
is a minimum-cost flow (MCF) problem when m = 2 and n ≥ 3 but not when m ≥ 3 and n ≥ 3.
We refer the interested readers to Appendix B for the definition of MCF problem, Appendix C for an
illustrative example which explicitly analyzes the constraint matrix of Eq. (3) when m = n = 3, and
Appendix D for the missing proofs.

3.1 Combinatorial techniques

We present some classical results in combinatorial optimization and graph theory, including Ghouila-
Houri’s celebrated characterization theorem [28].

Definition 3.1. A totally unimodular (TU) matrix is one for which every square submatrix has
determinant −1, 0 or 1.

Proposition 3.1 (Ghouila-Houri). A {−1, 0, 1}-valued matrix A ∈ Rm×n is TU if and only if for
each I ⊆ [m] there is a partition I = I1∪ I2 so that

∑
i∈I1 aij−

∑
i∈I2 aij ∈ {−1, 0, 1} for j ∈ [n].

Proposition 3.2. [5, Theorem 1, Chapter 15] Let A be a {−1, 0, 1}-valued matrix. Then A is TU if
each column contains at most two nonzero entries and all rows are partitioned into two sets I1 and
I2 such that: If two nonzero entries of a column have the same sign, they are in different sets. If these
two entries have different signs, they are in the same set.

Proposition 3.3. The constraint matrix arising in a MCF problem is TU and its rows are categorized
into a single set using Proposition 3.2.

3.2 Main result

We present our computational hardness of the FS-WBP in Eq. (3). First, the FS-WBP in this LP
form is an MCF problem when m = 2 and n ≥ 2. Indeed, it is a transportation problem with n
warehouses, n transshipment centers and n retail outlets. Each u1i is the amount of supply provided
by the ith warehouse and each u2j is the amount of demand requested by the jth retail outlet. (X1)ij
is the flow sent from ith warehouse to the jth transshipment center and (X2)ij is the flow sent from
the ith transshipment center to the jth retail outlet. (C1)ij and (C2)ij refer to the unit cost of the
corresponding flow. See [3, Page 400].
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Proceed to the setting m ≥ 3, it is unclear whether the graph representation of the FS-WBP carries
over. Instead, we turn to algebraic techniques and provide an explicit form as follows:

min

m∑
k=1

〈Ck, Xk〉 s.t.



−E · · · · · · · · · · · ·
... E

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . (−1)m−1E
...

...
. . .

. . .
. . . (−1)mE

G −G
. . .

. . .
...

... −G G
. . .

...
...

. . .
. . .

. . .
...

· · · · · · · · · (−1)mG (−1)m+1G





vec (X1)
vec (X2)

...

...

...

...
vec (Xm)


=



−u1

u2

...
(−1)m−1um−1

(−1)mum

0n
...

0n


,

(10)
where E = In ⊗ 1>n ∈ Rn×n2

and G = 1>n ⊗ In ∈ Rn×n2

. Each column of the constraint matrix
arising in Eq. (10) has either 2 or 3 nonzero entries in {−1, 0, 1}. In the following theorem, we study
the structure of the constraint matrix when m ≥ 3 and n = 2.

Theorem 3.4. The constraint matrix arising in Eq. (10) is TU when m ≥ 3 and n = 2.

Theorem 3.5. The FS-WBP in Eq. (10) is not a MCF problem when m ≥ 3 and n ≥ 3.

Remark 3.6. Theorem 3.5 resolves an open question and partially explains why the direct application
of network flow algorithms to the FS-WBP in Eq. (10) is inefficient. However, this does not eliminate
the possibility that the FS-WBP is equivalent to some other LP with good complexity. For example, Ge
et al. [26] have recently successfully identified an equivalent LP formulation of the FS-WBP which is
suitable for the interior-point algorithm. Furthermore, our results support the problem reformulation
of the FS-WBP which forms the basis for various algorithms; e.g., Benamou et al. [4], Cuturi and
Peyré [20], Kroshnin et al. [32], Ge et al. [26], Guminov et al. [29].

4 Fast Iterative Bregman Projection

In this section, we propose a fast deterministic variant of the iterative Bregman projection (IBP)
algorithm, named FASTIBP, with the complexity bound of Õ(mn7/3ε−4/3); see the pseudocode in
Algorithm 1 and 2. Note that (B1(λt1, τ

t
1), . . . , Bm(λtm, τ

t
m)) stand for the primal variables while

(λt, τ t) are the dual variables for the entropic regularized FS-WBP. Due to the space limit, we defer
all the technical lemmas and proofs to Appendix E.

While the IBP algorithm can be interpreted as a dual coordinate descent, the acceleration achieved
by the FASTIBP algorithm mostly depends on the refined characterization of per-iteration progress
using the scheme with momentum; see Step 1-3 and Step 8. This scheme has been studied by [41,
42, 24, 43] yet first introduced to accelerate the optimal transport algorithms. Furthermore, Step 4
guarantees that {ϕ(λ̌t, τ̌ t)}t≥0 is monotonically decreasing and Step 7 ensures the sufficient large
progress from (λtk, τ

t
k) to (λ̌t+1, τ̌ t+1). Step 5 are performed such that τ tk = τ̀ tk satisfies the bounded

difference property: max1≤i≤n(τ tk)i − min1≤i≤n(τ tk)i ≤ Rτ/2 while Step 6 guarantees that the
marginal conditions hold true: r(Bk(λtk, τ

t
k)) = uk for all k ∈ [m]. We see from Guminov et al. [29,

Lemma 9] that Step 5-7 refer to the alternating minimization steps for the dual objective function ϕ
with respect to two-block variable (λ, τ). We remark that Step 4-7 are specialized to the FS-WBP in
Eq. (3) and have not appeared in the coordinate descent literature.

Finally, the optimality conditions of primal entropic regularized WBP in Eq. (4) and dual entropic
regularized WBP in Eq. (6) are

r(Bk(λk, τk))

‖Bk(λk, τk)‖1
−uk =

c(Bk(λk, τk))

‖Bk(λk, τk)‖1
−

m∑
i=1

ωi
c(Bi(λi, τi))

‖Bi(λi, τi)‖1
= 0n for all k ∈ [m],

m∑
k=1

ωkτk = 0n.
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Algorithm 1: FASTIBP({Ck, uk}k∈[m], ε)

Initialization: t = 0, θ0 = 1 and λ̌0 = λ̃0 = τ̌0 = τ̃0 = 0mn.
while Et > ε do

Step 1: Compute
(
λ̄t

τ̄ t

)
= (1− θt)

(
λ̌t

τ̌ t

)
+ θt

(
λ̃t

τ̃ t

)
.

Step 2: Compute rk = r(Bk(λ̄tk, τ̄
t
k)) and ck = c(Bk(λ̄tk, τ̄

t
k)) for all k ∈ [m] and perform

λ̃t+1
k = λ̃tk −

1

4θk

(
rk

1>n rk
− uk

)
, for all k ∈ [m],

τ̃ t+1 = argmin∑m
k=1

ωkτk=0n

m∑
k=1

ωk

[
(τk − τ̄ tk)>

ck

1>n ck
+ 2θt‖τk − τ̃ tk‖2

]
.

Step 3: Compute
(
λ̂t

τ̂ t

)
=

(
λ̄t

τ̄ t

)
+ θt

(
λ̃t+1

τ̃ t+1

)
− θt

(
λ̃t

τ̃ t

)
.

Step 4: Compute
(
λ́t

τ́ t

)
= argmin

{
ϕ(λ, τ) |

(
λ
τ

)
∈
{(

λ̌t

τ̌ t

)
,

(
λ̂t

τ̂ t

)}}
.

Step 5a: Compute ck = c(Bk(λ́tk, τ́
t
k)) for all k ∈ [m].

Step 5b: Compute τ̀ tk = τ́ tk +
∑m
k=1 ωk log(ck)− log(ck) for all k ∈ [m] and λ̀t+1 = λ́t.

Step 6a: Compute rk = r(Bk(λ̀tk, τ̀
t
k)) for all k ∈ [m].

Step 6b: Compute λtk = λ̀tk + log(uk)− log(rk) for all k ∈ [m] and τ t = τ̀ t.
Step 7a: Compute ck = c(Bk(λtk, τ

t
k)) for all k ∈ [m].

Step 7b: Compute τ̌ t+1
k = τ tk +

∑m
k=1 ωk log(ck)− log(ck) for all k ∈ [m] and λ̌t+1 = λt.

Step 8: Compute θt+1 = θt(
√
θ2t + 4− θt)/2.

Step 9: Increment by t = t+ 1.
end while
Output: (B1(λt1, τ

t
1), B2(λt2, τ

t
2), . . . , Bm(λtm, τ

t
m)).

Algorithm 2: Finding a Wasserstein barycenter by the FASTIBP algorithm
Input: η = ε/(4 log(n)) and ε̄ = ε/(4 max1≤k≤m ‖Ck‖∞).
Step 1: Compute (ũ1, . . . , ũm) = (1− ε̄/4)(u1, . . . , um) + (ε̄/4n)(1n, . . . , 1n).
Step 2: Compute (X̃1, X̃2, . . . , X̃m) = FASTIBP({Ck, ũk}k∈[m], ε̄/2).
Step 3: Round (X̃1, X̃2, . . . , X̃m) to (X̂1, X̂2, . . . , X̂m) using Kroshnin et al. [32, Algorithm 4] such that
(X̂1, X̂2, . . . , X̂m) is feasible to the FS-WBP in Eq. (3).
Step 4: Compute û =

∑m
k=1 ωkX̂

>
k 1n

Output: û.

Since the FASTIBP algorithm guarantees that
∑m
k=1 ωkτ

t
k = 0n and r(Bk(λtk, τ

t
k)) = uk ∈ ∆n for

all k ∈ [m], the criterion depends on the following quantity to measure the residue at each iteration:

Et :=

m∑
k=1

ωk‖c(Bk(λtk, τ
t
k))−

m∑
i=1

ωic(Bi(λ
t
i, τ

t
i ))‖1. (11)

While the existing algorithms, e.g., accelerated IBP and APDAGD, are developed based on the
primal-dual framework which allows for better dependence on 1/ε by directly optimizing Et, the
FASTIBP algorithm indirectly optimizes Et through the dual objective gap and the scheme with
momentum (cf. Step 1-3 and Step 8), which can lead to better dependence on n.

Remark 4.1. First, we notice that each iteration updates O(mn2) entries while λ̃ and λ̌ can be
efficiently updated in distributed manner. Second, 4m marginals can be updated effectively by
using r(e−η

−1Ck) and c(e−η
−1Ck) for all k ∈ [m], which are stored before main loop. Finally,

(X̂1, . . . , X̂m) are approximate optimal transportation plans between m measures {uk}k∈[m] and
ε-approximate barycenter û. We can also construct û by using (X̃1, . . . , X̃m); see [32, Section 2.2].
Theorem 4.2. Let {(λt, τ t)}t≥0 be the iterates generated by the FASTIBP algorithm. The number of
iterations required to reach the stopping criterion Et ≤ ε satisfies t ≤ 1 + 10(n(R2

λ +R2
τ )ε−2)1/3

where Rλ, Rτ > 0 are defined in Lemma 2.2.
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Figure 1: The average normalized objective value and computational time (in seconds) of FASTIBP, IBP,
BADMM, and Gurobi from 10 independent trials.
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Figure 2: The average normalized objective value and computational time (in seconds) of the proximal variants
of FASTIBP and IBP from 10 independent trials.
Equipped with the result of Theorem 4.2, we are ready to present the complexity bound of Algorithm 2
for approximating the FS-WBP in Eq. (3).

Theorem 4.3. The FASTIBP algorithm for approximately solving the FS-WBP in Eq. (3) (Algo-
rithm 2) returns an ε-approximate barycenter û ∈ Rn within

O

mn7/3

(
(max1≤k≤m ‖Ck‖∞)

√
log(n)

ε

)4/3


arithmetic operations.

Remark 4.4. We assume for simplicity that all measures have the same support size . This assumption
is not necessary and our analysis is still valid when each measure has fixed support of different size.
However, our results can not be generalized to the free-support Wasserstein barycenter problem
in general since the computation of free-support barycenters requires solving a multimarginal OT
problem where the complexity bounds of algorithms become much worse; see Lin et al. [36].

5 Experiments

In this section, we evaluate the FASTIBP algorithm for computing fixed-support Wasserstein barycen-
ters. In all our experiments, we consider the Wasserstein distance with `2-norm and compare our
algorithm with Gurobi, iterative Bregman projection (IBP) algorithm [4] and Bregman ADMM
(BADMM) [57]1. In our figures, “g" stands for Gurobi; “b" stands for BADMM; “i1" and “i2" stand
for IBP with η = 0.01 and η = 0.001; “f1" and “f2" stand for the FASTIBP algorithm with η = 0.01
and η = 0.001. Due to space limits, some details and results are deferred to Appendix F and G.

Synthetic data. We present some preliminary numerical results in Figure 1 and 2. Given n = 100,
we evaluate the performance of FASTIBP, IBP, BADMM algorithms, and Gurobi by varying
m ∈ {20, 50, 100, 200} and use the same setup to compare the proximal variants of FASTIBP and
IBP. We use the proximal framework [32] with the same parameter setting as provided by their paper.

1We implement ADMM [56], APDAGD [32] and accelerated IBP [29] and find that they perform worse than
our algorithm. However, we believe it is largely due to our own implementation issue since these algorithms
require fine hyper-parameter tuning. We are also unaware of any public codes available online. Thus, we exclude
them for a fair comparison.
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FASTIBP (η = 0.001) IBP (η = 0.001)

100s

200s

400s

800s

Table 1: Approximate barycenters obtained by running FASTIBP and IBP for 100s, 200s, 400s, 800s.

From Figure 1, the FASTIBP algorithm performs better than BADMM and IBP in the sense that
it consistently returns an objective value closer to that of Gurobi in less computational time. IBP
converges very fast when η = 0.01, but suffers from a crude solution with poor objective value;
BADMM takes more time with unsatisfactory objective value, and is not provably convergent in
theory; Gurobi solves the problem of relatively small size very efficiently but suffer from scalability.
From Figure 2, the proximal variant of FASTIBP algorithm outperforms that of IBP algorithm in
terms of objective value while not sacrificing the efficiency.
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normalized obj

200 - 3.6e-03±3.1e-04
500 - 4.4e-03±6.2e-04
1000 - 4.8e-03±5.4e-04
2000 - 5.0e-03±3.8e-04

feasibility
200 3.2e-07±1.8e-07 7.4e-07±1.8e-07
500 2.8e-07±5.0e-08 7.0e-07±2.8e-07
1000 2.1e-07±1.0e-07 7.1e-07±2.0e-07
2000 2.0e-07±1.3e-07 8.7e-07±2.0e-07

iteration
200 1.5e+05±2.4e+04 2.4e+03±3.2e+02
500 5.0e+05±8.8e+04 3.3e+03±1.4e+03
1000 1.3e+06±1.5e+05 1.9e+03±3.1e+02
2000 4.9e+06±1.6e+06 4.5e+03±1.7e+03

Figure 3: Preliminary results with Gurobi
and the FASTIBP algorithm (η = 0.001).

To further compare Gurobi and the FASTIBP algorithm,
we conduct the experiment with n = 100 and the varying
number of marginals m ∈ {200, 500, 1000, 2000}. We fix
Tolfibp = 10−6 but without setting the maximum iteration
number. Figure 3 shows the average running time taken by
two algorithms over 5 independent trials. We see that the
FASTIBP algorithm is competitive with Gurobi in terms of
objective value and feasibility violation. In terms of com-
putational time, the FASTIBP algorithm increases linearly
with respect to the number of marginals, while Gurobi
increases much more rapidly. Compared to the similar re-
sults of Gurobi presented before [56, 26], we find that the
feasibility violation in our paper is better but the computa-
tional time grows much faster. This makes sense since we
run the dual simplex algorithm, which iterates over the fea-
sible solutions but is more computationally expensive than
the interior-point algorithm. Figure 3 demonstrates that
the structure of the FS-WBP is not favorable to the dual
simplex algorithm, partially confirming our computational
hardness results in Section 3.

MNIST images. We apply the FASTIBP algorithm (η = 0.001) to compute the Wasserstein
barycenter of the resulting images for each digit on the MNIST dataset and compare it to IBP
(η = 0.001). We exclude BADMM since Yang et al. [56, Figure 3] and Ge et al. [26, Table 1] have
shown that IBP outperforms BADMM on the MNIST dataset. The approximate barycenters obtained
by the FASTIBP and IBP algorithms are presented in Table 1. It can be seen that the FASTIBP
algorithm provides a “sharper" approximate barycenter than IBP when η = 0.001 is set for both.
This demonstrates the good quality of the solution obtained by our algorithm.

6 Conclusions

In this paper, we prove that the fixed-support Wasserstein barycenter problem (FS-WBP) in the
standard LP form is not a minimum-cost flow (MCF) problem when m ≥ 3 and n ≥ 3. Thus, the
direct application of network flow algorithms to the FS-WBP in standard LP form is inefficient,
supporting the favorable performance of various algorithms based on other reformulation of the
FS-WBP. We also propose a deterministic variant of iterative Bregman projection (IBP) algorithm,
namely FASTIBP, with the complexity bound of Õ(mn7/3ε−4/3). This bound is better than that of
Õ(mn2ε−2) from the IBP algorithm in terms of ε, and that of Õ(mn5/2ε−1) from other accelerated
algorithms in terms of n. Experiments on synthetic data and real images demonstrate the favorable
performance of the FASTIBP algorithm in practice.
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Broader Impact

The problem of computing barycenter of probability measures has become increasingly important
in several application domains, including physics, economics, machine learning, statistics, and data
science. However, in these applications, the number of supports of the probability measures, such
as images, can be very large. In this work, we study the fundamental hardness of the problem and
propose efficient and scalable algorithm to solve for the fixed-support barycenters. Our work provides
a new deterministic algorithm for computer scientists, physicists, economists, and statistician to
tackle computationally expensive problems in their application domains and potentially accelerate
scientific discoveries. We do not foresee any negative impact to society from our work.
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